
On Momentum Acceleration for Randomized Coordinate
Descent in Matrix Completion

Matthew Callahan1, Trung Vu2, and Raviv Raich1
1School of EECS, Oregon State University, Corvallis, OR 97331-5501, USA

2 Department of CSEE, University of Maryland, Baltimore County, MD 21250-0002, USA
{callamat, raich}@oregonstate.edu trungvv@umbc.edu

Abstract—Matrix completion plays an important role in machine learn-
ing and signal processing, with applications ranging from recommender
systems to image inpainting. Many approaches have been considered to
solve the problem and some offer computationally efficient solutions. In
particular, a highly-efficient random coordinate descent approach reduces
the per-epoch computation dramatically. This paper is concerned with
further improvement of computational efficiency to expand the range of
problem sizes and conditions that can be solved. Momentum acceleration
is a well-known method to improve the efficiency of iterative algorithms,
but applying it to random coordinate descent methods without increasing
the computational complexity is non-trivial. To address this challenge,
we introduce a momentum-accelerated randomized coordinate descent
for matrix completion approach that does not increase computational
complexity by accelerating at the level of epochs. Additionally, we propose
an analysis-driven, tuning-free method for step size selection. To that end,
we offer a convergence rate analysis for the algorithm. Using numerical
evaluations, we demonstrate the competitiveness of the method and verify
the theoretical analysis.

Index Terms—coordinate descent, asymptotic convergence analysis,
matrix completion, randomized methods.

I. INTRODUCTION

Matrix completion addresses the recovery of a rank-r matrix
M ∈ Rm×n from a subset of s entries, Ω = {(i, j) ∈ [m] × [n] |
Mij is observed}. One application is recommendation systems in
which the objective is to estimate the full set of ratings for every
user for every product, M , using only a small subset of user-product
ratings, Ω [1]. Numerous additional applications in signal processing
include image inpainting [2] and device localization [3]. Using a rank-
r factorization, the matrix completion problem can be reformulated
as finding an m × r matrix A and an n × r matrix B such that
(AB⊤)ij = Mij for all (i, j) ∈ Ω where |Ω| = s. The following
optimization is used to formalize matrix completion:

min
A∈Rm×r,B∈Rn×r

1

2
∥PΩ(AB⊤−M)∥2F , (1)

where the projection PΩ : Rm×n → Rm×n is defined as

[PΩ(X)]ij =

{
Xij (i, j) ∈ Ω,

0 (i, j) /∈ Ω.
(2)

There exists a long line of work focused on first-order iterative
methods for low-rank matrix completion, including gradient descent
and its variations [4]–[6], iterative hard-thresholding [7], [8], and
alternating minimization [9], [10]. Recently, we proposed a simple
yet competitive approach for solving matrix completion via random
coordinate descent (RCD) [11]. A theoretical rate of convergence
analysis was performed and confirmed via empirical evaluation.
Moreover, the approach benefits from a low per-epoch computational
complexity of O(sr). However, to extend the applicability of the
approach, we are interested in finding methods that can improve the
rate of convergence without increasing the per-epoch computational
complexity.

The acceleration of RCD methods has been studied in [12]–[14].
These methods apply acceleration with the update of each coordinate.
This is efficient under the assumption that calculating one entry of
the gradient is on the order of the number of coordinates. However,
for matrix completion via factorization, this calculation is of a lower
order than the number of unknown entries, since only one column
of A or of B is needed. Hence, a momentum acceleration step is of
a higher computational complexity order than a single coordinate
update, and care needs to be taken as to how often this step is
performed.

Contributions To address the aforementioned challenge, we intro-
duce a per-epoch momentum acceleration of factor-based randomized
coordinate descent for matrix completion. Additionally, we provide
a rate of convergence analysis on the mean error vector, which
we confirm using numerical experiments. Using this analysis we
introduce a method for determining the momentum coefficient a
priori, rendering our method tuning-free. Moreover, we demonstrate
empirically that the proposed method outperforms state-of-the-art
methods, achieving a superior convergence rate while maintaining the
same per-epoch computational efficiency as without the acceleration.

Notation. Throughout the paper, we use the notations ∥ ·∥F and ∥ ·∥
to denote the Frobenius norm of a matrix and the Euclidean norm
of a vector, respectively. Boldfaced symbols are reserved for vectors
and matrices, while the elements of a vector/matrix are unbold. In
addition, In denotes the n × n identity matrix. The notation e

(n)
i

denotes the ith vector in the natural basis of Rn. We use ⊗ to denote
the Kronecker product between two matrices and vec(X) to denote
the vectorization of X by stacking its columns on top of one another.
We use A(k) to denote iterations of coordinate updates, and Ak to
denote iterations where acceleration may occur.

II. BACKGROUND

To set the ground for understanding the momentum-based acceler-
ation of RCD for matrix completion, we begin with a brief overview
of momentum acceleration for fixed-point iterations and of the RCD
algorithm and its convergence rate analysis.

A. Momentum-based acceleration for fixed-point iterations

Consider a real-valued vector function f of a vector variable and
given a point x0 in the domain of f , the fixed-point iteration is given
by

xk+1 = f(xk), for k = 0, 1, 2, . . . ,

which yields a sequence of vectors x0,x1,x2, If f is a con-
traction map, this sequence converges to a fixed point x∗ such that
f(x∗) = x∗. If f is twice differentiable, then one can derive the
update equation for the error ϵk = xk − x∗ as a recursion

ϵk+1 = Tϵk + q(ϵk), (3)

where T = ∇f(x∗) and q is the residual linear approximation error
satisfying ∥q(ϵ)∥ ≤ q∥ϵ∥2 for any ϵ [15].

In [16], Vu and Raich showed that if T is diagonalizable, then for
arbitrarily small ϵ̄ > 0 it holds that ∥ϵk∥ < ϵ̄, ∀k ≥ N , where N is
the smallest integer satisfying

N ≥ log(1/ϵ̄)

log(1/ρ(T))
+ c

(
ρ(T),

q∥ϵ0∥
1− ρ(T)

)
, (4)

where 0 ≤ ρ(T) < 1 is the spectral radius of matrix T , q =
sup∥δ∥≤∥ϵ0∥

∥q(δ)∥
∥δ∥2 , and c(·) is a function independent of ϵ̄. This

suggests that the error norm decreases exponentially at rate ρ = ρ(T)
as ∥ϵk∥ ≤ Cρk (linear convergence).

To accelerate the convergence of xk towards x∗, a momentum-
accelerated version of the fixed-point iteration can be considered

xk+1 = f(xk) + β(xk − xk−1).

The resulting error update equation is then

ϵk+1 = Tϵk + β(ϵk − ϵk−1) + q(ϵk). (5)

By stacking ϵk+1 on top of ϵk, this equation can be rewritten as[
ϵk+1

ϵk

]
= H(β)

[
ϵk

ϵk−1

]
+

[
q(ϵk)

q(ϵk−1)

]
, H(β) =

[
T + βI −βI

I 0

]
.

Then, from (4), the number of iterations N required to achieve an
error of ϵ̄ is the smallest integer N such that

N ≥ log(1/ϵ̄)

log(1/ρ(H(β)))
+ c

(
ρ(H(β)),

q∥ϵ0∥
1− ρ(H(β))

)
,

for which the rate is ρ = ρ(H(β)). If T has all real eigenvalues
between 0 and 1, then by setting β to the optimal value β∗ = (1−√

1− ρ(T))2, the fastest rate of convergence (i.e., the smallest ρ)
can be achieved and is ρ(H(β∗)) =

√
β∗ = 1−

√
1− ρ(T) [17].

The rate of slowly converging unaccelerated fixed-point algorithms
can be expressed as ρ(T) = ρ(I −Q) = 1− δ, where δ ≪ 1. The
number of steps to achieve ϵ̄ error is proportional (up to an additive
constant) to 1/log(1/ρ) ≈ 1/δ. On the other hand, the rate for the
optimally-accelerated algorithm is ρ(H) = 1−

√
δ and consequently

the number of steps would be proportional to 1/
√
δ. This suggests

that momentum acceleration with an optimal step-size selection can
reduce the number of iterations to a number proportional to the square
root of the number of iterations in the unaccelerated case.

B. Randomized coordinate descent for matrix completion

1) Algorithm: In [11], a regularization-free randomized coor-
dinate descent algorithm on the factors is presented. To handle
factor ambiguity, a refactorization is included. The algorithm per-
forms iteration k by selecting a coordinate uniformly from the set
{A11, . . . , Amr, B11, . . . , Bnr} and minimizing the error (1) with
respect to that coordinate while holding the remaining coordinates
fixed. During an entry update, both the single entry of A(k) or B(k)

and the corresponding row or column of the residual error matrix
R(k) = PΩ(A

(k)(B(k))⊤−M) are updated as in Algorithm 1.
The rate of convergence of the error between X(k) = A(k)B(k)⊤

and M depends on the normalized columns of A and B at the
solution. Hence, one way to maintain a predictable rate is to construct
a unique factorization (up to permutation/sign). This is the approach
taken by [11]. Given arbitrary factors A and B, new factors Ã and
B̃ are produced such that ÃB̃⊤ = AB⊤ and Ã⊤Ã = B̃⊤B̃ = Σ
where Σ is the matrix of singular values of X . This procedure
follows Lines 1-7 of Algorithm 2. Assuming distinct values of Σ, this

Algorithm 1: One epoch of Randomize Coordinate Descent (RCD)
for Matrix Completion modified from [11]

Input: Initial value A ∈ Rm×r and B ∈ Rn×r , PΩ(M), Ω,
direction vector s ∈ Rm

Output: Normalized factors Ã ∈ Rm×r and B̃ ∈ Rn×r

1: R← PΩ(AB⊤−M) for all (i, j) ∈ Ω
2: for k = 1, 2, . . . , (m+ n)r do
3: Sample p ∈ {1, . . . ,m+ n} uniformly at random
4: if p ∈ [1,m] then ▷ Perform the A-update
5: Sample (i, j) ∈ {1, . . . ,m} × {1, . . . , r} uniformly
6: γ =

∑
l:(i,l)∈Ω RilBlj∑

l:(i,l)∈Ω B2
lj

▷ O(s/m)

7: Aij ← Aij − γ ▷ O(1)
8: for h : (i, h) ∈ Ω do ▷ O(s/m)
9: Rih ← Rih − γBhj

10: else ▷ Perform the B-update
11: Sample (i, j) ∈ {1, . . . , n} × {1, . . . , r} uniformly
12: γ =

∑
l:(l,i)∈Ω RliAlj∑

l:(l,i)∈Ω A2
lj

▷ O(s/n)

13: Bij ← Bij − γ ▷ O(1)
14: for h : (h, i) ∈ Ω do ▷ O(s/n)
15: Rhi ← Rhi − γAhj

16: (Ã, B̃) = Refactor(A,B, s) ▷ O
(
(m+ n+ r)r2

)

procedure produces unique factors Ã and B̃ up to a consistent per-
mutation and/or sign change of paired columns. This refactorization
procedure is performed every r(n + m) element updates, namely,
an epoch. This allows the computational complexity of the entire
algorithm to be O(sr) per epoch. Recall that s = |Ω| is the number
of known entries.

2) Error Analysis: In [11], an error analysis is presented on δ(k) =
(Z⊤SS⊤Z)1/2Z⊤ vec(A(k)(B(k))⊤−M), a projected version of
the error between X(k) = A(k)B(k)⊤ and M . Specifically, it is
shown that the error follows

δ(k) = T (k)δ(k−1) + q(δ(k−1)),

where q(δ) ≤ c∥δ∥2 for some c > 0, while T (k) is a random matrix
whose mean is given by T = E[T (k)] = I −Q. The analysis yields

Q =
1

(m+ n)r

m∑
i=1

r∑
j=1

G1/2Z⊤(vj ⊗ e
(m)
i)(vj ⊗ e

(m)
i)⊤ZG1/2

∥G1/2Z⊤(vj ⊗ e
(m)
i)∥2

+
1

(m+ n)r

n∑
i=1

r∑
j=1

G1/2Z⊤(e
(n)
i ⊗ uj)(e

(n)
i ⊗ uj)

⊤ZG1/2

∥G1/2Z⊤(e
(n)
i ⊗ uj)∥2

,

(6)

with UΣV ⊤ the reduced singular value decomposition of M , Z ∈
Rmn×(m+n−r)r an orthonormal basis of Imn−PV⊥ ⊗PU⊥ , uj =

Ue
(r)
j , vj = V e

(r)
j , S a selection matrix such that SS⊤vec(X) =

vec(PΩ(X)), and G = Z⊤SS⊤Z. The expected error based on the
previous iteration is then

E[δ(k+1)] = (I −Q)E[δ(k)] +O(∥δ(k)∥2).

However, as in [18], since the index is selected i.i.d. between
iterations, the above equation can be applied repeatedly to obtain
the expected error after t epochs as

E[δ(k+(n+m)rt] = (I −Q)(n+m)rtE[δ(k)] +O(∥δ(k)∥2). (7)

III. PROPOSED ALGORITHM

In this section, we introduce momentum acceleration to matrix
completion by random coordinate descent. Our proposed routine is
as follows:

1) Initialize A0, B0

2) Set A1 = A0, B1 = B0

3) for k = 1, 2, . . .

a) Generate (Ãk, B̃k) from iterated RCD:

(Ãk, B̃k) = RCD(RCD(. . .RCD(Ak,Bk)))︸ ︷︷ ︸
t nested functions

b) Update the factors as follows:

Ak+1 = Ãk + β(Ak −Ak−1), (8)

Bk+1 = B̃k + β(Bk −Bk−1). (9)

A pseudo-code for the routine is provided in Algorithm 3. Unlike
other random coordinate descent acceleration methods in the litera-
ture, we delay the acceleration step to occur after t epochs in order
to preserve the computational complexity.

Remark 1. Applying acceleration more frequently than once per
epoch increases the complexity. Accelerating individual coordinates,
as in [14], increases the per-epoch computational complexity from
O(sr) to O(sr) +O((n+m)2r2) since the acceleration operation
is O((n+m)r) while each coordinate update is O

(
s

n+m

)
.

Modified refactorization Due to the refactorization procedure
from [11], columns of Ak are ordered and scaled versions of the
left singular vectors of Xk. In our analysis, we expect the column
subspace to change gradually from one iteration to the next. However,
a sign ambiguity issue may cause a column of Ak to change rapidly,
meaning Ak and Xk would change at different rates, and the
algorithm could fail. Hence, we modify the refactorization procedure
to enforce a consistent sign in the factors. First, we perform the
procedure in [11] (Lines 1-7 of Algorithm 2). Let the factors produced
by this process be

(Â, B̂) = Refactor(A,B) (Lines 1-7).

Using an arbitrary vector s ∈ Rm selected at the initialization stage,
we adjust the sign of the columns of Â and B̂ as follows

Ã = Â diag(sign(Â⊤s)),

B̃ = B̂ diag(sign(Â⊤s)).

The column order ambiguity is addressed by ordering the singular
vectors in the descending order of their respective singular values.

Theorem 1. The optimal momentum step for acceleration in Algo-
rithm 3 after every t epochs is

β = β∗ = (1−
√

1− ρt)
2, (10)

where the corresponding t-epoch unaccelerated rate ρt = ρ((I −
Q)(n+m)rt) with Q from (6). Furthermore, the expected error is
bounded by

∥E[AkB
⊤
k −M]∥2F ≤ C(β∗)k, (11)

for some finite constant C > 0 depending only on ∥A0B
⊤
0 −M∥2F

and M .

A sketch of the proof of Theorem 1 can be found in Section IV.
The optimal momentum parameter in (10) depends on the t-epoch
rate which is defined by the matrix Q from (6). Since we do not

Algorithm 2: Sign-Aligned Refactor, modified from [11]

Input: Factors A ∈ Rm×r and B ∈ Rn×r , Sign direction s ∈ Rm

Output: Normalized factors Ã ∈ Rm×r and B̃ ∈ Rn×r

1: G = (B⊤B)(A⊤A) ▷ O
(
(m+ n+ r)r2

)
2: Perform the EVD: G = PΛP−1 ▷ O(r3)
3: Σ = Λ1/2 ▷ O(r)

4: D =
(
Σ−1P⊤A⊤AP

)1/2
▷ O(r3)

5: Q = DP−1, Q−1 = PD−1 ▷ O(r2)
6: Â = AQ−1 ▷ O(mr2)
7: B̂ = BQ⊤ ▷ O(nr2)
8: Ã = Âdiag(sign(Â⊤s)) ▷ O(r2 +mr)
9: B̃ = B̂ diag(sign(Â⊤s)) ▷ O(nr)

have the solution before the algorithm is executed, we propose to
estimate the true rate as a mean of random problems Mi with the
same observation matrix Ω. This average can be performed on either
the eigenvalue, Ê[(1−λmin(Q(Mi,Ω)))

(n+m)rt], or the rate, (Ê[1−
λmin(Q(Mi,Ω))])

(n+m)rt.

Remark 2. As the matrix dimensions increase, our preliminary
analysis of random matrix Q suggests that its eigenvalues approach a
limiting distribution with finite support. Moreover, for large matrices
this distribution correctly predicts the rate of the algorithm. Further,
the support of the limiting eigenvalue distribution of Q depends only
on ρs = s

nm
, ρr = 1−

√(
1− r

n

) (
1− r

m

)
, and n/m.

While we maintain that our analysis of the mean error is correct
for all t ≥ 1, we find that in some cases for small matrices and small
values of t that the mean is not the only parameter relevant to the
rate of convergence of typical sequences. Increasing t allows analysis
of the mean to translate to analysis of particular executions of the
algorithm.

IV. ERROR ANALYSIS

In this section, we provide a proof sketch for Theorem 1 in
Section III. We begin with an argument that the direct update on
the factors Ak and Bk leads to an asymptotically similar update on
Xk = AkBk

⊤:

Xk+1 = X̃k + β(Xk −Xk−1) +O(∥Xk −X∗∥2F). (12)

This follows from the expansion of Ak, Bk, and Xk around their
fixed points: Ak = A∗ + ∆Ak, Bk = B∗ + ∆Bk, and Xk =
X∗ + ∆Xk. Further perturbation analysis is left to the reader due
to space constraints.

By projecting the error Xk−X∗ and taking the expectation as in
(7), we can define vk = E[G1/2Z⊤(Xk −M)] and obtain

vk+1 = (I −Q)((m+n)rt)vk + β(vk − vk−1) +O(∥vk∥2),

where we can replace X∗ with the explicit form of the minimizer
M . This equation takes the form of (5) from Section II-A where
T = (I −Q)(n+m)rt and qk is O(∥vk∥2) so by selecting

β = (1−
√

1− ρt)
2,

vk converges at the rate of
√
β. Since this transformation G1/2Z⊤

is full rank, equality of norms leads to the bound in Theorem 1.

Remark 3. If we expect ρt = (1− δ)t for δ ≪ 1, then ρt ≈ 1− tδ,
and the expected number of epochs needed to reach a precision ϵ̄ is
proportional to t

− log(
√
β)
≈

√
t/δ. By contrast, the unaccelerated

algorithm requires the number of epochs proportional to 1/δ.

0 0.5 1 1.5 2 2.5 3 3.5 4

flops 10
9

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

RCD

Alternating Minimization

Accelerated RCD, t=51

Accelerated RCD, t=5

0 500 1000 1500 2000 2500

iterations

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

Fig. 1: Squared Frobenius error of mean distance for an 80× 80 matrix. (Left) vs. flops for different algorithms. The algorithms shown are
the unaccelerated RCD (∗), optimally accelerated RCD (+ and ▽), and alternating minimization (◦). (Right) vs. the number of iterations for
β = 0 (blue) for β estimated in the two ways described (◦ and +), and for β∗ (∗). The dashed straight lines are the predicted asymptotic
rate, and the solid lines are the results generated from executing the algorithms.

Algorithm 3: Momentum Accelerated RCD for Matrix Completion

Input: PΩ(M), β, A0, B0, t
Output: {A,B}

1: Initialize Ac ← A0, Ao ← A0 and Bc ← B0, Bo ← B0

2: Choose random s ∈ Rm

3: An ← Ac, Bn ← Bc

4: for l = 1, 2, . . . do
5: for i = 1, 2, . . . , t do
6: (An,Bn)← RCD(An,Bn, s) ▷ O(sr)

7: An ← An + β (Ac −Ao) ▷ O(mr)
8: Bn ← Bn + β (Bc −Bo) ▷ O(nr)
9: Ao ← Ac, Bo ← Bc

10: Ac ← An, Bc ← Bn

11: A = Ac, B = Bc

V. NUMERICAL RESULTS

We conduct simulations to verify our analytic expression for the
rate of convergence, show that our method is competitive with state-
of-the-art, and confirm that choosing β via the solution-agnostic
manner in Section III reaches near optimal performance.

1) Experimental settings: We selected s = e
(m)
1 to produce these

figures. The figures use an 80 × 80 matrix M and Ω that were
generated with ρr = 0.15 and ρs = 0.29 and the initial values A0

and B0 were generated from the true factors with random additive
noise. The acceleration step was performed every t epochs as marked
in Fig. 1 (left) and every t = 5 epochs in Fig. 1 (right). Each figure
shows the squared mean error obtained by averaging over 5 runs of
the same M , Ω, A0, and B0.

Fig. 1 (left) shows the performance of the proposed method using
the optimal β∗ calculated from the true Q for the problem for each
value of t compared in the number of flops to the performance of the
unaccelerated version and to alternating minimization. We considered
alternating minimization due to its computational efficiency [9], [19],
and selected an implementation that minimizes each of the rows
of each factor separately and is O(sr2). The Lightspeed Matlab
toolbox1 was used to track the number of flops for each operation of

1The toolbox can be found at Tom Minka’s Github:
https://github.com/tminka/lightspeed

each algorithm; we used r3 to be the exact number of flops for the
eigenvalue decomposition, but this is not the dominant term.

Fig. 1 (right) uses β calculated based on the rate estimated by
10 random solution matrices using the same Ω, with both estimation
methods suggested in Section III (before Remark 2). It also compares
these to β∗ from the true Q in terms of number of iterations, each
of which is t epochs. The asymptotic rates were produced from the
spectrum of the true Q based on the β selected from the estimates.

2) Results: In Fig. 1 (left) we see that the accelerated algorithm
is the most computationally efficient algorithm and outperforms
alternating minimization even when the unaccelerated method does
not due to the small size of the problem. In addition, the figure
demonstrates that various values of t allow convergence, and in-
creasing values of t yield smoother convergence. Fig. 1 (right) shows
that exact knowledge of ρt is not required to achieve performance
gains with momentum since the accelerated versions achieve a faster
rate than the unaccelerated version (blue) despite generating the
value of the momentum parameter without reference to the rate of
the unaccelerated algorithm. In addition, the rates in Fig. 1 (right)
approach the asymptotic bounds support our theory of the asymptotic
rate.

VI. CONCLUSION

In this paper, we present an acceleration method for random-
ized coordinate descent matrix completion. We avoid increasing the
computational complexity via an epoch-level acceleration step. We
present a convergence analysis of the proposed algorithm resulting in
a closed-form expression for the asymptotic linear convergence rate.
This leads to a closed-form expression for the optimal momentum
parameter. Numerical experiments establish the correctness of the
rate expression and establish the effectiveness of the acceleration
method. In future work, we plan to derive an expression for the
rate of convergence that can be expressed in terms independent
of the solution, such as the ratio of known entries to the matrix
size, the shape of the matrix, and the relative rank. This would
ease determination of the optimal momentum parameter. In addition,
this would allow an a priori prediction of the total number of flops
required to achieve a certain accuracy, allowing for a comprehensive
comparison between methods for matrix completion.

REFERENCES

[1] Nathan Srebro and Tommi Jaakkola, “Weighted low-rank approxima-
tions,” in Proc. Int. Conf. Mach. Learn., 2003, pp. 720–727.

[2] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye, “Tensor
completion for estimating missing values in visual data,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 208–220, 2013.

[3] Luong Trung Nguyen, Junhan Kim, Sangtae Kim, and Byonghyo Shim,
“Localization of iot networks via low-rank matrix completion,” IEEE
Trans. Commun., vol. 67, no. 8, pp. 5833–5847, 2019.

[4] Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen, “Implicit regu-
larization in nonconvex statistical estimation: Gradient descent converges
linearly for phase retrieval and matrix completion,” in Proc. Int. Conf.
Mach. Learn. PMLR, 2018, pp. 3345–3354.

[5] Trung Vu and Raviv Raich, “On the asymptotic linear convergence of
gradient descent for non-symmetric matrix completion,” in Asilomar
Conf. Signals Syst. Comput. IEEE, 2023, pp. 1049–1053.

[6] Tian Tong, Cong Ma, and Yuejie Chi, “Accelerating ill-conditioned low-
rank matrix estimation via scaled gradient descent,” Journal of Machine
Learning Research, vol. 22, no. 150, pp. 1–63, 2021.

[7] Lijun Ding and Yudong Chen, “Leave-one-out approach for matrix
completion: Primal and dual analysis,” IEEE Trans. Inf. Theory, vol.
66, no. 11, pp. 7274–7301, 2020.

[8] Trung Vu, Evgenia Chunikhina, and Raviv Raich, “On local linear
convergence rate of iterative hard thresholding for matrix completion,”
IEEE Trans. Signal Process., vol. 70, pp. 5940–5953, 2022.

[9] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi, “Low-rank matrix
completion using alternating minimization,” in Proc. Annu. ACM Symp.
Theory Comput., 2013, pp. 665–674.

[10] Moritz Hardt, “Understanding alternating minimization for matrix
completion,” in Proc. Annu. IEEE Symp. Found. Comput. Sci., 2014,
pp. 651–660.

[11] Matthew Callahan, Trung Vu, and Raviv Raich, “Provable randomized
coordinate descent for matrix completion,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process. IEEE, 2024, pp. 9421–9425.

[12] Yurii Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems,” SIAM J. Optim., vol. 22, no. 2, pp. 341–362,
2012.

[13] Filip Hanzely and Peter Richtarik, “Accelerated coordinate descent with
arbitrary sampling and best rates for minibatches,” in Proc. Int. Conf.
Artif. Intell. Stat. 2019, pp. 304–312, PMLR.

[14] Qin Wang, Weiguo Li, Wendi Bao, and Feiyu Zhang, “Accelerated
randomized coordinate descent for solving linear systems,” Mathematics,
vol. 10, no. 22, pp. 4379, 2022.

[15] David G Luenberger and Yinyu Ye, Appendix A, p. 507–514, Springer,
3 edition, 2008.

[16] Trung Vu and Raviv Raich, “A closed-form bound on the asymptotic
linear convergence of iterative methods via fixed point analysis,” Optim.
Lett., vol. 1, pp. 1–14, 2022.

[17] Boris T Polyak, Multistep Methods, pp. 65–67, New York, Optimization
Software,, 1987.

[18] Robert M Gower and Peter Richtárik, “Randomized iterative methods
for linear systems,” SIAM J. Matrix Anal. Appl., vol. 36, no. 4, pp.
1660–1690, 2015.

[19] Dongha Lee, Jinoh Oh, and Hwanjo Yu, “OCAM: Out-of-core coordi-
nate descent algorithm for matrix completion,” Inf. Sci., vol. 514, pp.
587–604, 2020.

